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Abstract

Many multivariate time series data in practical applications, such as health care,
geoscience, and biology, are characterized by a variety of missing values. It has
been noted that the missing patterns and values are often correlated with the target
labels, a.k.a., missingness is informative, and there is significant interest to explore
methods which model them for time series prediction and other related tasks. In
this paper, we develop novel deep learning models based on Gated Recurrent Units
(GRU), a state-of-the-art recurrent neural network, to handle missing observations.
Our model takes two representations of missing patterns, i.e., masking and time
duration, and effectively incorporates them into a deep model architecture so that
it not only captures the long-term temporal dependencies in time series, but also
utilizes the missing patterns to improve the prediction results. Experiments of time
series classification tasks on real-world clinical datasets (MIMIC-III, PhysioNet)
and synthetic datasets demonstrate that our models achieve state-of-art performance
on these tasks and provide useful insights for time series with missing values.

1 Introduction

Multivariate time series data are ubiquitous in many practical applications ranging from health care,
geoscience, astronomy, to biology and others. They often inevitably carry missing observations due
to various reasons, such as medical events, saving costs, anomalies, inconvenience and so on. It
has been noted that these missing values are usually informative missingness [22], i.e., the missing
values and patterns provide rich information about target labels in supervised learning tasks (e.g, time
series classification). To illustrate the idea, we show some examples from two real world health care
datasets (MIMIC-III, PhysioNet) in Figure (1| We plot the Pearson correlation coefficient between
variable missing rates and the labels (mortality and ICD-9 diagnoses). We observe that the missing
rate is correlated with the labels, and the variables with low missing rate are usually highly correlated
with the labels, demonstrating the usefulness of missingness patterns in solving a prediction task.

In the past decades, various approaches have been developed to address the missing values [23]. A
simple solution is to omit the missing data and perform analysis only on the observed data. A variety
of solutions have been developed to fill in the missing values, such as smoothing or interpolation [[13],
spectral analysis [[17], kernel methods [20]], multiple imputation [28]], and the EM algorithm [7]. [23]]
and references therein provide a good review on missing data solutions. However, existing solutions
often result in a two-step process where imputations are disparate from the prediction models and
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missing patterns are not effectively explored, thus leading to suboptimal performance in prediction
and analysis [27].

In the meanwhile, Recurrent Neural Networks (RNNs), such as Long Short-Term Memory (LSTM) [9]
and Gated Recurrent Unit (GRU) [4]], have shown to achieve the state-of-the-art results in many
applications with time series or sequential data, including machine translation [1} [25]] and speech
recognition [8]. RNNs enjoy several good properties such as strong prediction performance as well
as the ability to capture long-term temporal dependencies and variable-length observations. RNNs
for missing data has been studied in earlier works [3. 26/ [18]] and applied for speech recognition and
blood-glucose prediction. However, there has not been works which directly model missing patterns
into RNN for time series classification problems. Exploiting the power of RNNs along with the
informativeness of missing patterns is a new promising venue to effectively model multivariate time
series and is the main motivation behind our work.

In this paper, we develop novel deep learning models based on Gated Recurrent Units (GRU) to
effectively exploit two types of informative missingness patterns, i.e., masking and time duration.
Masking informs the model which inputs are observed (or missing), while time duration encapsulates
the input observation patterns. Our model captures the observations and their dependencies by
applying masking and time duration (using a decay term) to the inputs and network states of GRU,
and can be jointly trained using backpropagation. Thus, our models not only can capture the long-term
temporal dependencies of time series observations but also can utilize the missing patterns to improve
the prediction results. Empirical experiments on real-world clinical datasets as well as synthetic
datasets demonstrate that our proposed models outperform strong deep learning models built on GRU
with imputation as well as other strong baselines. These experiments show that our proposed method
is suitable for many time series classification problems with missing data, and in particular is readily
applicable to the predictive tasks in emerging healthcare applications. Moreover, our method also
provides useful insights into more general research challenges of time series analysis with missing
data beyond classification tasks, including: (1) Effective solutions to characterize the missing patterns
of missing-at-not-random time series, such as masking and time duration modeling; (2) A general
deep learning framework to handle time series with missing data; (3) An interesting analysis on
relationship between missingness and the outcomes for the proposed models on a varieties of datasets.

2 RNN models for time series with missing variables

2.1 Notations

We denote a multivariate time series with D variables of length ~ X: Input time series (2 variables);

Tas X = (z1,2s,...,27)" € RT*D, where @, € RP  s: Timestamps for X;

represents the ¢-th observations/measurements of all variables M Masking for X;

and z¢ denotes the measurement of d-th variable of @ Let 4 Timeduration forX.

st € R denote the time-stamp when the ¢-th observation is y — [47 49 NA 40 NA 43 55
obtained and we assume that the first observation is made at NA 15 14 NA NA NA 15
time t = 0 (s; = 0). A time series X could have missing $=[0 01 06 16 22 25 31]

values. We introduce a mask vector m; € {0,1}" to denote  — [1 r o 1 0 1 1
which variables are missing at time step . The mask vector o 1. 1 0 0 0 1
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md — 1, if a:f is observed Figure 2: An example sequence of mea-
t 0, otherwise surement vectors x, time stamps s,

mask vectors m and durations J;.



For each variable d, we also maintain the time duration since
its last observation, and it is denoted by ¢ € R and given as:

. St — 81+ 00, t>1ml, =0
of = St — S¢—1, t> l,mgﬁ1 =1
0, t=1

An example of these notations is illustrated in Figure 2| We also denote the missing rate for a
yariabh? d as de and i.t is cglculated as pgl( =1- % ZZ;I m¢. In this paper, we are int.erested
in the time series classification problem, where we predict the labels /,, given the time series data

D, where D = {(Xn, 85, M, A, 1)}, and X, = [x@,._.,wg:j}],sn - [sgn>,.._,sg:j) ,

n=1’

M, = [m”, . om@ A = (807, 60| and i, € {1, L),

2.2 Recurrent neural networks for time-series classification

In this paper, we investigate the use of recurrent neural networks (RNN) for time-series classification,
as their recursive formulation allows it to handle variable-length sequences naturally. Moreover, RNN
shares the same parameters across all time steps which greatly reduces the total number of parameters
we need to learn. Among different variants of the RNN, we specifically consider an RNN with gated
recurrent units [4}16].

The structure of GRU is shown in Figurem GRU has a reset gate r{ and an update gate zg for
each of the hidden state hi to control. At each time ¢, the update functions are shown as follows:

%t =0 (szt +U.hi_1 + bz) Tt =0 (Wr:l:t +U,hi_1 + br)

ht = tanh (W:ﬁf + U(’I’t ® h’t—l) + b) ht = (1 — Zt) ® ht—l +z;© ht

where matrices W, , W, W U, ,U,,U and vectors b,,b,.,b are model parameters. o is an
element-wise sigmoid function, and we use ©® for element-wise multiplication. This formulation
assumes that all the variables are observed.

2.3 RNN baseline approaches

There are two straightforward approaches to using an RNN for time series data with missing variables.
The first, and perhaps most naive, approach is to preprocess the time series so that it does not have
any missing variables when presented to an RNN. We describe three such approaches in this section.

GRU-0 We may simply replace each missing observation with the mean of the variable across the
training examples, i.e.,

zd — méad + (1 —md)z?, (1)
~ N T, N Th
where Id = Zn:l Zt:l mgnxg,n/ Zn=1 Zt:l mgn'

GRU-f We can exploit the temporal structure in each time series. That is, we assume that any
missing measurement is same as the last measurement, i.e.,

8 mizd + (1 —mb)azd, (2)

where t' < t is the last time the d-th variable was observed. This is the forward imputation model.
Our preliminary experiments showed that forward imputation works better than imputating missing
values based on interpolation. If the first few measurements are missing, we do backward imputation.
If all the measurements of a variable are missing, then we impute with empirical mean.

GRU-xmd Instead of explicitly imputing missing values, we may simply indicate which variables
are missing as a part of input to a GRU-RNN. We do this by concatenating the measurement, mask

and duration vectors: a;ﬁ") — mﬁ"); mgn); 5%")} , where a:,E") is from Equationor
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(a) GRU (b) GRU-DM (c) GRU-DS (d) GRU-DI

Figure 3: Graphical illustrations of (a) the original GRU, (b, ¢) GRU with the trainable decay rates and (d)
GRU with the dynamic imputation.

2.4 Trainable decay models

Let us begin by relaxing the assumption made for the forward imputation model. Instead of using
the last observation as it is, we may decay it over time toward the empirical mean (which we take as
a default configuration). There are two things to be considered when decaying variables. First, we
want the rate at which each variable decays to differ from the other variables based on the underlying
nature of the variable. Second, the decay rate should be indicative of missingness patterns which are
informative (as we have shown earlier). In short, we aim at modeling decay rates to be learned rather
than fixed a priori, based on the missingness pattern. We model a vector of decay rates = as

Y = eXp{—maX (0, Wry(st +b7)}, (3)

where W, and b, are model parameters that we train jointly with all the other parameters of the
RNN. We chose the exponentiated negative rectifier in order to keep each decay rate in a reasonable
rate between 0 and 1. We however note that it is possible to use other formulations such as a sigmoid

function instead of the exponentiated negative rectifier, as long as the resulting decay rate vf € [0,1].

GRU-DM: Input decay This trainable decay scheme can be readily applied to the measurement
vector by

o mizf + (1 —miniag + (1 —mi) (1 — )z )

where xf, is the last observation of the d-th variable (¢’ < t) and Z¢ is the empirical mean of the
d-th variable. When decaying the input variable directly, we constrain W, to be diagonal, which
effectively makes the decay rate of each variable independent from the others’.

GRU-DS: Hidden decay As the decay rates are trained together with the whole GRU-RNN, we
can instead decay the hidden state of the RNN. Intuitively, this has an effect of decaying the features
rather than raw input variables. This is implemented by decaying the previous hidden state h;_;
before computing a new hidden state h;:

hi_1 < v, ©hi_q, )

in which case we do not constrain W, to be diagonal.

2.5 GRU-DI: Goal-oriented imputation model

We may alternatively let the GRU-RNN predict the missing values in the next timestep on its own.
When missing values occur only during test time, we simply train the GRU-RNN to predict the
measurement vector of the next time step as a language model [[L6] and use it to fill the missing values
during test time. This is unfortunately not applicable for some time series applications such as in
healthcare domain, which also have missing data during training.

Instead, we propose here to view missing values as latent variables in a probabilistic graphical model.
Given a timeseries X, we denote all the missing variables by M x and all the observed ones by Ox.
Then, training a time-series classifier with missing variables becomes equivalent to maximizing the
marginalized log-conditional probability of a correct label I, i.e., log p(1|Ox ).

The exact marginalized log-conditional probability is however intractable to compute, and we instead
maximize its lowerbound:

log p(I|Ox) = log ZP(”MX, Ox)p (Mx|0x) = Epxmpmx|ox) logp (IMx, Ox),
Mx



where we assume the distribution over the missing variables at each time step is only conditioned on
all the previous observations:

d
my

T 1
p(Mx|Ox) = H p(@d|@1.(—1), Mas—1), 01— 1))- (6)
=1 D

1<d
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Although this lowerbound is still intractable to compute exactly, we can approximate it by Monte
Carlo method, which amounts to sampling the missing variables at each time as the RNN reads the
input sequence from the beginning to the end, such that

zd — mizd + (1 - m)zd, (7)
where Ty ~ xf|@1.1—1), M1.(1—1), O1:¢t—1)-

By further assuming that &; ~ N (p,, o7) where p, = v, © (W h,_1 + b,) and oy = 1, we can
use a reparametrization technique widely used in stochastic variational inference [12} 21] to estimate
the gradient of the lowerbound efficiently. During the test time, we simply use the mean of the missing
variable, i.e., £; = p,, as we have not seen any improvement from Monte Carlo approximation in
our preliminary experiments. We view this approach as a goal-oriented imputation method, and refer
to this approach as GRU-DI. The whole model is trained to minimize the classification cross-entropy
error {104 10ss and we take the negative log likelihood of the observed values as a regularizer.

N Ty D d d|,,d ~d

1 1S gy mi - logp(af|ufd, of)

S Elog?loss + A— Z T Z =1 . D (8)
N n=1 T, t=1 Zd:l mg

3 Experiments

We demonstrate the performance of our proposed models on one synthetic and two real-world health-
care datasets (MIMIC-III, PhysioNet) and compare it to several strong machine learning and deep
learning approaches in classification tasks. We study the impact of informative missingness on the
model performance. We also evaluate our models for different settings such as early prediction and
different dataset sizes.

3.1 Dataset descriptions and experimental design

Table 1: Dataset statistics

MIMIC-III  PhysioNet2012 Gesture

# of samples (V) 19714 4000 378
# of variables (D) 99 33 23
Mean of # of time steps 35.89 68.91 21.42
Max. of # of time steps 150 155 31
Mean variable missing rate 0.9621 0.8225 N/A

To evaluate our proposed framework, we ran a series of prediction experiments on three datasets.
Statistics of these datasets are shown in Table|I| For each dataset, we only consider time steps when
at least one measurement is available.

Gesture phase segmentation data This UCI dataset [15]] has multivariate time series features with
5 different gesticulations. It is regularly sampled and has no missing values. We extracted 378
time series and randomly introduced missing values to generate 4 synthetic datasets. The missing
rates in these synthetic datasets are the same (around 50%) but have different correlations with the
ground-truth labels. We use these datasets to study the impact of modeling missingness patterns in
our models.



Physionet challenge 2012 data This dataset, from PhysioNet Challenge 2012 [24], is a publicly
available collection of multivariate clinical time series from 8000 ICU records. Each record is a
multivariate time series of roughly 48 hours and contains 33 variables such as Albumin, heart-rate,
glucose etc. We used Training Set A subset in our experiments since outcomes (such as in-hospital
mortality labels) are publicly available only for this subset. We conduct the following two prediction
tasks on this dataset.

e Mortality (Phy-Mor) task — Predict whether the patient dies in the hospital. There are 554
patients with positive mortality label. We treat this as a binary classification problem.

o All 4 (Phy-4tasks) tasks — Predict 4 tasks: in-hospital mortality (mortality), length-of-stay less
than 3 days (los< 3), whether the patient had a cardiac condition (cardiac), and whether the
patient was recovering from surgery (surgery). We consider this as a multi-task prediction
problem.

MIMIC-III data This public dataset [[10] has deidentified clinical care data collected at Beth Israel
Deaconess Medical Center from 2001 to 2012. It contains over 58,000 hospital admission records of
38,645 adults and 7,875 neonates. For our work, we extracted 99 time series features from 19714
admission records for 4 events including input-events (fluids into patient, e.g., insulin), output-events
(fluids out of the patient, e.g., urine), lab-events (lab test results, e.g., pH values and platelet count)
and prescription-events (drugs prescribed by doctors, e.g., aspirin and potassium chloride). These
events are known to be extremely useful for studying intensive care unit patients. All the time series
are >48 hours of duration, and only the first 48 hours (after admission) time series data is used for
training and testing our models. We perform following two predictive tasks on MIMIC-III.

e Mortality (MIMIC-III-Mor) task — Predict whether the patient dies in the hospital. There are
1716 patients with positive mortality label and we perform binary classification.

e ICD-9 Code Prediction (MIMIC-III-ICDY) task — Predict the ICD-9 diagnosis codes for each
admission. There are 20 diagnoses{]_-] (e.g., respiratory system diagnosis) in our dataset. We treat
it as a multi-task prediction problem.

3.2 Methods and implementation details

We categorize all evaluated methods into four groups:

1. Non-RNN Baselines (Non-RNN): We evaluate logistic regression (LR), support vector machines
(SVM) and Random Forest (RF) which are widely used models in health care applications.

2. RNN Baselines (RNN): We consider LSTM-0, GRU-0, GRU-f and GRU-xmd from Section[2.3]
3. Proposed Methods (Proposed): We test GRU-DM, GRU-DS and GRU-DI from Sections[2.4] 2.5}

4. Ensemble Methods (Ensemble): We evaluate several ensembles of proposed and baselines
methods.

The non-RNN baselines cannot handle missing data directly. We carefully design experiments for
non-RNN models to capture the informative missingness as much as possible to have fair comparison
with the RNN methods. Similar to RNN baselines, we can concatenate the mask vector along with
the measurements and feed it to non-RNN models. However, the time duration vector cannot be
concatenated since non-RNN models only work with fixed length inputs. We regularly sample the
time-series data to get a fixed length input and perform imputation to fill in missing values. For
PhysioNet dataset, we sample the time series on an hourly basis and propagate measurements forward
(or backward) in time to fill gaps. For MIMIC-III dataset, we consider two hourly samples (in the
first 48 hours) and do forward (or backward) imputation. Our preliminary experiments showed
2-hourly samples obtains better performance than one-hourly samples for MIMIC-III. We report
results for both concatenation of input and mask vectors (e.g., SVM-xm, LR-xm, and RF-xm) and
only input vector without mask (e.g., SVM-f, LR-f, and RF-f). We use the sklearn python library
for the non-RNN model implementation and tune the parameters by cross-validation. For SVM, we
choose RBF kernel since it performs better than other kernels.

For RNN models, we use a binary logistic regressor on top of the last hidden state hr to do
classification. We use 100 and 64 hidden units in GRU-0 for MIMIC-III and PhysioNet datasets,

"http://www.tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx


http://www.tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx

1 GRU-0 GRU-xmd ® GRU-DM 1 GRU-O  ©GRUf * GRU-xmd

=GRU-DS  ® GRU-DI ® GRU-DM ® GRU-DS m GRU-DI
0.9 0.9
0.8 0.8
) II II | II )
0.6 I I 0.6 III
0 0.2 0.5 0.8 mortality los<3 cardiac surgery

Figure 4: Performance on Gesture synthetic datasets ~ Figure 5: AUC score for 4 prediction tasks on Phys-
with different correlations between missingness and ~ ioNet dataset. x-axis: task; y-axis: AUC score.
labels. x-axis: average Pearson correlation score of

the each variable’s missing rate and the target label in

that synthetic dataset; y-axis: AUC score.

respectively. All the other RNN models were constructed to have a comparable number of parameters.
For GRU-xmd, we use mean imputation for input (Equation[T). We train all the RNN models with
the Adam optimization method [[11]] and use early stopping to find the best weights on the validation
dataset. All the input variables are normalized to be 0 mean and 1 standard deviation. We report
the results from 5-fold cross validation for all the methods. For ensemble methods, we average the
soft-labels of several classifiers and treat it as the ensemble prediction.

Recently RNN models have been explored for modeling diseases and patient diagnosis in health care
domain [14} 15, [19]] using doctor notes but are not readily applicable for comparison in our time series
classification tasks since they don’t handle missing data.

We will release our code to maximize reproducibility and to create a new benchmark for studying
time series classification with missing data.

3.3 Quantitative results

Impact of missingness and label correlation on synthetic dataset To evaluate the impact of
modeling missingness we conduct experiments on the synthetic Gesture datasets. Figure ] shows the
AUC score comparison of our proposed models (GRU-DM, GRU-DS, and GRU-DI) and two baseline
GRU models (GRU-0 and GRU-xmd), given different correlations between missing rate and the label.
Missing rate is the same for all the settings, but a higher correlation means the missingness is more
informative. Since GRU-0 does not utilize masking or time duration, it performs similarly across all 4
correlation settings. All other models benefit from the missingness, especially when the correlation is
high, and our proposed methods beat baselines in all settings. GRU-xmd, another baseline, performs
well when correlation is high, but performs even poorer than GRU-0 when the correlation is low. This
demonstrates that by simply concatenating the masking and time duration to the input, GRU-xmd
cannot distinguish whether the missingness is useful or not. The results on synthetic datasets provide
an insightful way to understand how our proposed models behave with different data properties.

Evaluation on real datasets Table 2] shows the prediction performance comparison of the models
listed in Section [3.2] on mortality task for MIMIC-IIT and PhysioNet datasets. We observe the
following: All models improve their performance when they feed missingness patterns along with
inputs. Our proposed models achieve the best AUC score in both datasets. Our ensemble model based
on proposed GRU models (GRU-DM, GRU-DS, and GRU-DI) and two non-RNN baseline models
(SVM-xm and RF-xm) achieves the best performance with a significant improvement. This implies
that our models exploit some knowledge which the baseline models do not capture. Also, Figure[3]
and Figure [6]respectively show the AUC scores for all 20 ICD-9 diagnosis category prediction on
MIMIC-III dataset and all 4 tasks on PhysioNet dataset for all RNN models. Our proposed models
performs best in most of the tasks.

3.4 Discussions

Decay analysis  Figure[7]shows the -y plots of all the variables for our GRU-DM model in Phy-Mor
experiments. We observe that the decay rate is almost constant for variables that correspond to vital
signs and a few lab measurements. Since these variables have less missing rate, our models do not



Table 2: Model performances measured by the Area Under ROC (AUC) score for predicting in-hospital mortality

Models MIMIC-III PhysioNet

LR-f 0.7589 +0.015  0.7423 + 0.011

SVM-f 0.7908 £ 0.006  0.8131 =+ 0.018

Non-RNN "~ pp.f 0.8203 +0.004  0.8183 £ 0.015
LR-xm 0.7715 £ 0.015  0.7625 = 0.004

SVM-xm  0.8146 =0.008  0.8277 + 0.012

RE-xm 0.8294 £ 0.007  0.8157 £ 0.013

LSTM-0  0.8142+0.014  0.8025 =+ 0.013

RNN  GRU-0 0.8066 £ 0.010  0.8087 = 0.011
GRU-f 0.8139 +0.008  0.8299 =+ 0.011

GRU-xmd  0.8371 £ 0.008 0.8215 +£ 0.009

GRU-DM  0.8411 £0.008 0.8338 +0.011

Proposed  GRU-DS 0.8438 £0.005 0.8229 £0.010
GRU-DI 0.8421 £ 0.002 0.8202 +£ 0.004

Ensemble 0.8699 £0.005 0.8457 +0.006

0.9 GRU-0 GRU-f GRU-xmd ® GRU-DM m GRU-DS = GRU-DI

0.8
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Figure 6: AUC score for 20 MIMIC-III ICD-9 diagnosis prediction tasks. x-axis: ICD-9 diagnosis category id;
y-axis: AUC score. ICD-9 categories are ordered by the correlation of variable missing rate and labels; leftmost:
ICD-9 category with highest correlation value; rightmost: lowest correlation value.

decay them over time. On the other hand, the variables with large decay mainly correspond to the
lab test variables which have a long time duration between observations. Among these, variables
such as Weight, Cholesterol, pH, Lactate, PaO2, etc. are known to be very important for clinical
outcome prediction [29, 2] and thus, our model decays them appropriately so that their more recent
observations are used for mortality prediction task.

Per time step prediction Although our model is trained on the prediction of last time step, it can be
used directly to make predictions before it sees all the time series. This is very useful in applications
such as health care, where early decision making is beneficial for patient care. Figure|[§|shows the
online prediction results for MIMIC-III mortality tasks, where the model makes prediction before it

S S —— S
Cholesterdl p7r i &Troponinl’ 3: Albumin 0: ALP TA 2:AS 5: Bilirubin 16: Lactate 24: Sa02 30: WBC
mr:0.9989 mr:0.9984 mr:07 mr:0.9915 mr:0.9888 mr:0.9885 mr:0.9885 mr:0.9884 mr:0.9709 mr:0.9705 mr:0.9532

11: Glucose| 19: Na 18: Mg 12: HCO3 4: BUN [7: Creatining [22: Plateletg 15: K \}-HGI— \1: Pa02 20: PaCO2
mrio:

mr:0.9528 mr:0.9508 mr:0.9507 mr:0.9507 mr:0.9496 mr:0.9493 mr:0.9489 mr:0.9477 mr:0.9338 mr:0.9157

32:p! 9: Fi02 3: RespRat 10: GCS 26: Temp T 29: Urine 17: MAP 8: DiasABP 25: SysABP g
mr:0.9118 mr:0.883 mr:0.8053 mr:0.7767 mr:0.6915 mr:0.5452 mr:0.5095 mr:0.2141 mr:0.2054 mr:0.2052 mr:0.1984

Figure 7: Decay -, plots of all 33 variables for Phy-Mor task in GRU-DM model. Variables in green: lab
measurements; in red: vital signs. Variables are sorted in decreasing order of missing rate. mr: missing rate.
x-axis: time duration 8¢, in range [0, 24 hours]; y-axis: decay value ¢, in range [0, 1].
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sees the entire time series. First, all the three proposed models beat the RNN baselines consistently
from the very beginning. Second, with only part of the time series, the proposed methods can get the
same or better performance than SVM and RF. Our models achieve similar prediction performance
(i.e., same AUC) 11 hours earlier than SVM and 6 hours earlier than RF.

Performance with different training data size In many practical applications, model scalability
with growing dataset size is very important. To evaluate the model performance with varying training
dataset size, we generate three smaller datasets (2k, Sk, 10k admissions) from MIMIC-III by keeping
the ratio of mortality label to dataset size similar to the original dataset. We compare our proposed
models with three most competitive baseline models (SVM-xm, RF-xm, GRU-xmd) on these smaller
datasets. We observe that all models can achieve improved performance from more training samples.
However, the improvements of non-RNN baselines are quite limited compared with our models. This
result indicates that the gap in performance between our models and the non-RNN baselines will
continue to grow as more data becomes available.

4 Summary

In this paper, we proposed novel GRU-based models to effectively model multivariate time series
with missing data. Our model captures the informative missingness by incorporating masking and
time duration directly into the GRU architecture. Empirical experiments on real-world healthcare
datasets showed promising results of our models. For future work, we are interested in exploring deep
learning approaches to characterize missing-not-at-random data and conducting theoretical analysis
to understand the behaviors of existing solutions to handle missing values.
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A Supplementary

A.1 MIMIC-III preprocessing details

Here, we describe the preprocessing details for MIMIC-III dataseﬂ MIMIC-III provides several
relational database tables containing information of data relating to patients who stayed within the
intensive care units (ICUs) at Beth Israel Deaconess Medical Center. The admission table contains
over 58,000 hospital admission records of 38,645 adults and 7,875 neonates. We chose four tables
namely inputevents-mv (fluids into patient, e.g. insulin), outputevents (fluids out of the patient, e.g.
urine), labevents (lab test results, e,g. pH, Platelet count) and prescription events (drugs prescribed by
doctors, e.g. aspirin and potassium chloride) to collect the patient data recorded in critical care units
and hospital record systems. The inputevents-mv table collects the intake for patients monitored using
the iMDSoft Metavision system. For our work, we use 19714 admission records collected during
2008-2012 by Metavision data management system which is still employed at the hospital. The data
collection and organization in Metavision system is much neater than the earlier Philips CareVue
system [2001-2008]. From each of the four tables, we chose the top 50 items (i.e. features/variables)
since these items are present in many of the patients’ records. To avoid/reduce ambiguity and noisy
observations, we ensured that all the measurements for a particular variable has only one unit of
measurement. We also aggregated the multiple readings of a feature at a single time stamp based on
the feature type. For instance, some inputevents features should be averaged while others need to
be summed up. This resulted in 99 variables being extracted from the four tables for 19714 patient
admission records. For each of the admission records, we collected both the variable value x; and the
time-stamp of observation s;. In addition, for each admission record we queried the database tables
to get the ICD-9 diagnosis codes. One admission record can be associated with multiple ICD-9 codes.
We also queried the discharge time and death time from the Admissions table of MIMIC-III to find
the mortality label for each admission record. The ICD-9 diagnosis codes, shown in Table [3[ were
grouped into 20 categories according to the information from the Thomson Reuters Webpag% The
class distribution of the ICD-9 codes is shown in Figure [I0}
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Figure 10: MIMIC-III ICD-9 diagnosis code class distribution. x-axis, ICD-9 diagnosis category id; y-axis: the
ratio of admission records with the diagnosis code.

A.2 Descriptions for Figure 1

In many time series applications, the pattern of missing variables in the time series is often informative
and useful for prediction tasks. Here, we empirically confirm this claim on two health care datasets
by investigating the correlation between the missingness and prediction label (mortality prediction
task). We compute the Pearson correlation coefficient between p% and label ¢ across the training
time series. As shown in Figure[I| we observe that the variables with low missing rate are highly
correlated with the target label, demonstrating the usefulness of missingness patterns in solving a
prediction task. Note that p% is dependent on mask vector (m{) and number of time steps 7".

*https://mimic.physionet.org/
*http://tdrdata.com/ipd/ipd_SearchForICD9CodesAndDescriptions.aspx
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Table 3: MIMIC-III ICD-9 diagnoses tasks description

Task ID ICD-9 Codes Diagnoses Groups
1 001 - 139 Infectious and Parasitic Diseases
2 140 - 239 Neoplasms
3 240 - 279 Endocrine, Nutritional, Metabolic, Immunity
4 280 - 289 Blood and Blood-Forming Organs
5 290 - 319 Mental Disorders
6 320 - 389 Nervous System and Sense Organs
7 390 - 459 Circulatory System
8 460 - 519 Respiratory System
9 520 - 579 Digestive System
10 580 - 629 Genitourinary System
11 630 - 677 Pregnancy, Childbirth, and the Puerperium
12 680 - 709 Skin and Subcutaneous Tissue
13 710 - 739 Musculoskeletal System and Connective Tissue
14 740 - 759 Congenital Anomalies
15 780 - 789 Symptoms
16 790 - 796 Nonspecific Abnormal Findings
17 797 - 799 I1l-defined and Unknown Causes of Morbidity and Mortality
18 800 - 999 Injury and Poisoning
19 V Codes Supplemental V-Codes
20 E Codes Supplemental E-Codes
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